JUGOSLOVENSKO NAUČNO VOĆARSKO DRUŠTVO

PREŠTAMPANO

JUGOSLOVENSKO VOĆARSTVO
Journal of Yugoslav Pomology

Originalan naučni rad – Original scientific paper

Atrofija semenih zametaka kod morfološki atipičnih cvetova šljive

ATROPHY OF OVULES IN FLOWERS WITH AN INTERRUPTED DEVELOPMENT IN THE PLUM

Nikola Mićić
Gordana Đurić

Institut za istraživanja u poljoprivredi „Srbija”
Centar za voćarstvo i vinogradarstvo Čačak

Vol. 32. br. 121–122 (1998/1–2), 37 – 44
Atrofija semenih zametaka kod morfološki
atipičnih cvetova šljive

Nikola Mićić
Gordana Đurić

Institut za istraživanja u poljoprivredi „Srbija”
Centar za voćarstvo i vinogradarstvo Čačak

Sadržaj: Prekid razvoja i formiranje morfološki atipičnih – deformisanih cvetova kod šljive pred-
stavlja pojavu koja se javlja sa različitim intenzitetom u zavisnosti od ekoloških uslova u završnim
fazama razvoja cvetova kao genotipska specifičnost. Budući da je u atipičnim – morfološki
deformisanim cvetovima muški sporofit i gemetofit histološki normalan, u ovom radu proučavana
je histološka struktura semenih zametaka u takvim cvetovima.

Ključne reči: Šljiva, morfološki deformisani cvetovi, semeni zameci.

Uvod

U toku proučavanja ciklusa organogeneze rezličitih genotipova šljive uočena je pojava prekida razvoja cvetova kod sorti Požegača i Čačanska rodna. Pojava zaus-
tavljanja razvoja krnuličnih i čaščićnih listića i filamenata imala je za posledicu formi-
ranje atipičnih cvetova koji su neposredno po cvetanju otpali. Analiza zastupljenosti i
lokacije stabala sa prisutnom pojavom prekida u razvoju cvetova (13,92% – 87,46% deformisanih cvetova) u voćnjaku pokazuje da postoje određeni tipovi sorte Požegača
sa izraženim razlikama u sklonosti ka formiranju ovih cvetova (Mićić et al., 1990). Analiza uticaja temperaturnih uslova na ovu pojavu, takođe, pokazuje određeni uticaj:
kraci period trenda srednjih dnevnih temperatura iznad 5°C do cvetanja, i naglo
podizanje srednjih dnevnih temperatura iznad 10°C pred cvetanje, imaju za posledicu
pojavu većeg broja ovih cvetova (Mićić, 1992).

Histološke analize cvetova zaustavljenih u razvoju u odnosu na normalne cvet-
tove pokazuju da je u ovim cvetovima polen normalno razvijen i ne pokazuje razlike
u kljavnosti u odnosu na polen tipičnih cvetova, dok su semeni zameci atipičnih cveto-
tova u potpunosti atrofirali (Mićić et al., 1993).

Pojava većeg broja deformisanih cvetova na stablima ima za posledicu sman-
jenje rodnog potencijala ovih sorti šljive.
Cilj ovoga rada je bio da se definiše međusobna uslovljenost između atrofije semenih zametaka kod morfoloških atipičnih cvetova koji su prekinuti u svom razvoju.

Materijal i metode


Histološke analize cvetnih pupljaka i cvetova izvršene su parafinskim tehnikom: fiksacija prema Navašinu, rezanje preseka debljine do 10 μm, i bojenje Delafildovim hematoksilinom.

Rezultati i diskusija

Izvršene histološke analize normalnih – tipičnih i morfološki deformisanih – atipičnih cvetova (Sl. 1) kod sorti Požegače i Čačanska roda u uslovima Čačka, potvrdile su da je u normalnim cvetovima u fenofazi punog cvetanja muški i ženski sporofit i gametofit normalno razvijen (Sl. 2 i 3), dok je u atipičnim – morfološki deformisanim cvetovima, došlo do atrofije semenih zametaka (Sl. 4).

U toku obe godine ispitivanja na posmatranim sortama bilo je prisutno od 7 – 19 % cvetova sa prekinutom razvojem, odnosno morfološki atipičnih cvetova. Histološke analize pupljaka i cvetova do fenofaze zelene glavice, na ovom nivou posmatranja, nisu pokazale pojavu atrofije elemenata semenih zametaka ili tkiva plodnika.

Prvi znaci prekida diferencijacije cvetova uočeni su u fenofazi belog balona. Naime, u ovoj fenofazi mogu se uočiti cvetovi kod kojih je zaustavljen rast kruničnih listića usled čega dolazi do njihovog delimičnog otvaranja u vršnom delu. Morfološke razlike između cvetova sa prekinutom diferencijacijom i cvetova koji se normalno razvijaju postaju sasvim izraženo.
Sl. 2. Histološke analize semenog zametka normalnih cvetova šljive u fenofazi punog cvetanja pokazuju njegovu normalnu razvijenost i funkcionalnu strukturu: A) poprečni presek plodnog i semenih zametaka u zoni embrionovih kescica; B) uzdužni presek semenog zametka sa embrionovom kesicom; C) konstitucija embrionove kesice.

Fig. 2. Histological analyses of ovules in plum normal flowers during phenophase of full bloom showing its normal development and functional structure: A) ovary and ovule cross section in the embryo sacs zone; B) vertical section of ovule with embryo sac; C) embryo sac constitution.

Sl. 3. Histološke analize antere i polenovog zrna tipičnih – normalnih cvetova, i atipičnih – morfološki deformisanih cvetova pokazuju normalnu funkcionalnu građu do prašenja antera: A) histološki presek antere sa polenovim zrnima početkom fenofaze cvetanja; B) hidratišano polenovo zrno u momenitu pucanja antera.

Fig. 3. Histological analyses of anther and pollen grains in typical – normal flowers, and atypical – morphologically deformed flowers showing normal functional constitution up to anther pollination: A) histological section of anther with pollen grains at the onset of flowering phenophase; B) hydrated pollen grain at the moment of anther cracking.
Fig. 4. Histological analyses of ovule in atypical – morphologically deformed flowers showing differing signs of atrophy: A) cross section of ovary with ovules with complete nucellus and embryo sacs atrophy; B) vertical section of ovary with progressive atrophy of nucellus, integuments and surrounding ovary tissue.

ne neposredno pre ulaska u fenofazu cvetanja. Histološke analize cvetova kod kojih su uočeni prvi znaci prekida diferencijacije do ulaska u fenofazu cvetanja, na ovom nivou posmatranja ne pokazuju znakove atrofije semenog zametka. Ulaskom u fenofazu punog cvetanja u cvetovima sa prekinutim razvojem uočavaju se prvi znaci atrofije tkiva nucelusa u centralnom i halaznom regionu (Sl. 5). Dalji proces atrofije tkiva nucelusa odvija se progresivno i u potpunosti zahvata halazni region, a potom i tkivo integumenata. U toku svih faza u procesu atrofije nucelusa u njegovom centralnom i halaznom delu, njegova struktura u mikropilarnom delu i embrionovih kesica održava se u nenarušenom stanju, odnosno njihova histološka i citološka konstitucija na ovom nivou posmatranja ne pokazuje znakove atrofije (Sl. 6). Takođe, nenarušena struktura embrionovih kesica može se konstatovati u semenim zamećima kod kojih je došlo do potpune atrofije halaznog nucelusa i prvih simptoma atrofije tkiva integumenta (Sl. 7). Na kraju fenofaze punog cvetanja u cvetovima sa prekinutim razvojem uočava se atrofija tkiva nucelusa u mikropilarnom regionu i embrionovih kesica, potpuna atrofija integumentata, funikulusa i okolnog tkiva plodnika (Sl. 8), posle čega dolazi do masovnog opadanja ovih cvetova.

Na osnovu opisane dinamike atrofije pojedinih elemanata semenog zametka u cvetovima sa prekinutim razvojem i komparacije konstitucije embrionovih kesica ovih cvetova i normalnih cvetova u morfološkom i funkcionalnom smislu, možemo zaključiti da je prekid diferencijacije i formiranje atipičnih – morfološki deformisanih cvetova šljive uvek praćen pojavom atrofije semenih zametaka. Kod takvih semenih zametaka normalna struktura embrionovih kesica se relativno duže održava, odnosno atrofija semenih zametaka nije nastala kao posledica poremećaja u razvoju embrionovih kesica ili pod njihovim uticajem.
Sl. 5. Dynamics of atrophy process in nucellus and ovule central and chalazal part in the flowers with interrupted development: A) the initial phase of atrophy – separation of nucellus in the upper part of ovule; B) nucellus atrophy spread over central and chalazal ovule region; C) progressive atrophy of chalazal nucellus.

Fig. 5. During all phases in the process of central and chalazal nucellus atrophy, the structure of micropylar nucellus and embryo sacs remains unruined, namely the histologic and cytologic constitution show no signs of atrophy at this study level. Ovule with progressive atrophy of chalazal nucellus B) with embryo sac of normal constitution is presented on figure (B – detail from fig. A)

Fig. 6. U toku svih faza u procesu atrofije centralnog i halaznog nucelusa, struktura mikropilarnog nucelusa i embrionovih kesica održava se u nenarušenom stanju, odnosno njihova histološka i citološka konstitucija na ovom nivou posmatranja ne pokazuje znakove atrofije. Na slici se vidi ovula sa progresivnom atrofijom halaznog nucelusa B) u kojoj je embrionova kesica normalne konstitucije (B – detalj sa slike A)
Fig. 7. In the flowers with interrupted development – morphologically deformed flowers, the complete nucellus atrophy is coupled with progressive atrophy of integument tissue in both pollen seeds (A) however, atrophy of its structure has not still occurred in their embryo sacs (B – detail from fig. A).

Fig. 8. Histological analyses of atypical – deformed flowers in the phenopase of full bloom showing that the complete atrophy of nucellus tissue and integument tissue (A), finally leads to degradation of embryo sac structures (B – detail from fig. A).
Dobijeni rezultati jasno pokazuju da je atrofija u atipičnim cvetovima šljive pre svega posledica prekida u razvoju ovih cvetova gde je prisutan fenomen da i pored atrofije nucelusa embrionove kćisce određeno vreme zadržavaju svoju normalnu kon-
stituiciju.

Zaključak

Na osnovu analize funkcionalne strukture embrionovih kćisca u cvetovima sa prekinutom razvojem može se zaključiti da je prekid razvoja i pojava atipičnih cveto-
va kod šljive, praćen pojavom atrofije semenih zametaka u ovim cvetovima koja nije
nastala kao posledica poremećaja u razvoju embrionovih kčisca ili pod njihovim uti-
cajem.

Literatura


God. XL, 44: 73–86.

Stuttgart–Hohenheim, Germany.

ATROPHY OF OVULES IN FLOWERS WITH AN INTERRUPTED DEVELOPMENT IN THE PLUM

Nikola Mićić
Gordana Đurić

ARI „Serbia”, Fruit and Grape Research Centre, Čačak

Summary

While studying the flower development of different plum cultivars, interruption in flower development was observed in cvs. Požegača and Čačanska Rodna, occurring from the beginning of the balloon stage to full flowering. As a result of the interruption in the development of petals, sepals and filaments, atypical flowers were formed, which fell immediately after flowering. Histological analyses of the atypical flowers compared to the normal ones showed the occurrence of ovule atrophy. The first atrophy symptoms were observed when the flowers were in the balloon stage. Histological analyses of the flowers showed normally developed male and female gametophytes, atrophy of the ovules being observed in the chalaza region of the nucellus. As the flowering stage began, the atrophy of the nucellus continued to spread to the integuments as well, spreading over the embryo sac in the full flowering stage. On the basis of the development of the embryo sac structure in the atypical flowers, it may be concluded that the described phenomenon of ovule atrophy did not appear due to disorders in embryo sac development, or under its influence.

Author’s address:
Dr Nikola Mićić
Institut „Srbija”, Centar za voćarstvo i vinogradarstvo
Kralja Petra I 9, 32000 Čačak, YU