
Short communication

Functionality of embryo sacs as related to their viability and fertilization success in sour cherry

Radosav Cerović*, Nikola Mićić

ARI ‘Serbia’, Fruit and Grape Research Centre, 32000, Čačak, FR, Yugoslavia

Accepted 31 July 1998
Aims and scope. *Scientia Horticulturae* is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, sub-tropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport, etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those requiring processing (e.g. rubber, tobacco, tea, and quinine) will not.

EDITORIAL TEAM
For the Americas, Australia, New Zealand and Japan
Prof. M.S. Reid (Editor-in-Chief), University of California, Department of Environmental Horticulture
Davis, CA 95616, USA

For the Rest of the World
Dr. K.E. Cockshull,
Horticulture Research International, Wellesbourne, Warwick CV35 9EF, UK

FOUNDING EDITOR
S.J. Wellensiek

BOOK REVIEW EDITOR
E. Heuvelink, Department of Horticulture, Agricultural University Wageningen, Haagsteeg 3, 6708 PM
Wageningen, Netherlands

EDITORIAL ADVISORY BOARD
J.P. Bower, Outspan Citrus Centre, Nelspruit,
South Africa
W.J. Bramlage, Univ. Massachusetts, Amherst,
MA, USA
R.I. Cabrera, Rutgers Univ., NJ, USA
Z. Dapeng, China Agric. Univ., Beijing, China
Z. Dewei, Chinese Acad. Agr. Sci., Beijing, China
G.C. Douglas, TEAGASC, Dublin, Ireland
R.L. Geneve, Univ. Kentucky, Lexington, KY, USA
J. Goudriaan, Agric. Univ. Wageningen,
Wageningen, Netherlands
J.L. Guardiola, Univ. Politècnica de Valencia,
Valencia, Spain
W.P. Hackett, Univ. California, Davis, CA, USA
A.H. Halevy, The Hebrew Univ., Rehovot, Israel
E. Heuvelink, Agric. Wageningen,
Wageningen, Netherlands
C.C. Hole, Hortic. Res. Int. Wellesbourne, UK
S. Iwahori, Univ. Tsukuba, Tsukuba, Ibaraki,
Japan
V. Kesavan, W. Aust. Dept. Agric., Kununurra,
WA, Australia

T. Kozai, Chiba Univ., Chiba, Japan
R.U. Larsen, Swedish Univ. of Agric. Sci.,
Alnarp, Sweden
A.A. Monteiro, Inst. Superior de Agronomia,
Lisbon, Portugal
R.E. Paull, Univ. Hawaii, Honolulu, HI, USA
F. Pliego Alfaro, Univ. Málaga, Málaga, Spain
J.V. Possingham, CSIRO, Adelaide, S.A.,
Australia
L. Rallo, Univ. Cordoba, Cordoba, Spain
T.J. Samuelson, AFRC, Maidstone, Kent, UK
M. Sedgley, Waite Agric. Res. Inst.,
Glen Osmond, S.A., Australia
V. Shattuck, Univ. Guelph, Ont., Canada
S. Subhadradchandhu, Kasetsart Univ., Bangkok,
Thailand
D.W. Turner, The Univ. W. Australia,
Nedlands, WA, Australia
B.N. Wolstenholme, Univ. Natal,
Pietermaritzburg, South Africa
R.H. Zimmerman, USDA-ARS, Beltsville, MD,
USA

Publication information: *Scientia Horticulturae* (ISSN 0304-4238). For 1999 volumes 79–82 are scheduled for publication. Subscription prices are available upon request from the Publisher. Subscriptions are accepted on a prepaid basis only and are entered on a calendar year basis. Issues are sent by surface mail except to the following countries where air delivery via SAL mail is ensured: Argentina, Australia, Brazil, Canada, Hong Kong, India, Israel, Japan, Malaysia, Mexico, New Zealand, Pakistan, PR China, Singapore, South Africa, South Korea, Taiwan, Thailand, USA. For all other countries airmail rates are available on request. Claims for missing issues should be made within six months of our publication (mailing) date.
Short communication

Functionality of embryo sacs as related to their viability and fertilization success in sour cherry

Radosav Cerović*, Nikola Mićić

ARI ‘Serbia’, Fruit and Grape Research Centre, 32000, Čačak, FR, Yugoslavia

Accepted 31 July 1998

Abstract

The functionality of embryo sacs in relation to their viability and fertilization success was studied over a 2-year period in the sour cherry cultivar ‘Čačanski Rubin’ during full bloom under field conditions. The occurrence of abnormal embryo sacs resulted in a varying number of functional embryo sacs assessed at the onset of full bloom and had a direct effect on the number of viable embryo sacs. The functionality of embryo sacs, represented by the number of normally developed embryo sacs, which varies from year to year, is approximately equal to the initial number of embryo sacs with embryo, namely, it is the factor which contributes to fertilization success in this cultivar. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Sour cherry; Viability of embryo sac; Embryo; Fertilization success

1. Introduction

‘Čačanski Rubin’ is the first sour cherry cultivar bred in Yugoslavia. It is a midlate cultivar with large, dark-red aromatic fruits suitable for processing and fresh use. So far, this cultivar has shown a varying degree of fertility, i.e. irregular bearing (Cerović, 1989). A number of factors appear to be related to irregular bearing. Irregularities during the process of microsporogenesis have been reported as a possible explanation for changes in the degree of fertility, resulting in variability of pollen germination in vitro and in vivo (Cerović, 1991, 1992).

* Corresponding author. Tel.: +381-32-22-625; fax: +381-32-21-391; e-mail: yugvocca@emi.yu

0304-4238/99/$ – see front matter © 1999 Elsevier Science B.V. All rights reserved.

PII: S0304-4238(98)00206-4
Temperature at flowering time is one of the major ecological factors affecting pollen tube growth rate in fruit crops. Temperature-dependent degree of pollen tube growth was assessed in sour cherry (Cerović and Ružić, 1992), pear (Vasilakakis and Porlingis, 1985), apple (Child, 1966) and almond (Socias i Company et al., 1976; Vasilakakis and Porlingis, 1984). Under field conditions, low temperatures at flowering can have a substantial impact on pollen tube growth rate in the pistil, i.e. the efficiency of the progamic phase, which can result in a considerable reduction in the number of fruits set, e.g. in some plum cultivars (Thompson and Liu, 1973).

On the other hand, the regularity with which macrosporogenesis and macrogametogenesis takes place is closely related to the formation of a normal and functional embryo sac. The occurrence of the early degeneration of megaspores, sterility of the egg apparatus, and disturbances during fertilization have been observed in sour cherry (Potemkina, 1973). In avocado, the occurrence of varying numbers of nuclei in the embryo sac results in the termination of megagametogenesis (Tomer et al., 1976).

Embryo sac viability is a major factor which has a direct influence on the effective pollination period, and thereby the fertility in fruit crops (Williams, 1970). In some apricot cultivars this viability is short and accompanied by early degeneration (Eaton, 1959; Eaton and Jamont, 1965). A too short period of egg apparatus viability restricts the number of fertilized egg cells and the central nucleus in some sour cherry cultivars (Dys, 1984).

The aim of the present study was to consider the functionality of embryo sacs in sour cherry ‘Čačanski Rubin’ as related to their viability and fertilization success under field conditions at full bloom, as the major parameter, which may affect the degree of fertility.

2. Materials and methods

The sour cherry ‘Čačanski Rubin’ (‘Chase Morello’ × ‘Köröser’) was used for the experiment which was conducted in the field on selected trees using uniform branches with flowers at the late balloon stage. A group of flowers was emasculated and pollinated with ‘Šumadinka’ (‘Köröser’ × ‘Heimanns Konservenwechsel’) at the beginning of full bloom, whereas another group was left unpollinated to test embryo sac viability. Flowers from both groups were isolated by bagging. Twenty flowers per combination were taken every other day from onset of full bloom to 10 days later. The ovaries were fixed in FPA, (formalin : propionic acid : 70% ethyl alcohol, 5 : 5 : 90) and stored at 4°C. The material was dehydrated in an ethyl alcohol series and then embedded in paraffin wax. Paraffin embedded material was sectioned at 10 μm longitudinally and transversally and stained with safranin, crystal violet and green light SF,
according to Gerlach (1969). Daily temperatures were recorded during full bloom. The study was conducted over the 2-year period (1992–1993).

3. Results

As with other stone fruits, the sour cherry contains two ovules. One of the ovules, the primary one, develops into the seed if fertilized, whereas the other, the secondary one, atrophies and eventually degenerates. In this paper we analyzed only the primary ovule. The embryo sac of sour cherry belongs to the monosporial 8-nucleate bipolar Polygonum type. Early degeneration of individual cells, or of the entire embryo sac, was observed during the formation of the 8-nucleate embryo sac or immediately after the completion of this process. Such cells lose their normal shape, which is usually accompanied by a strong colour reaction (Fig. 1(a)). Sometimes preserved nucleoli can be seen. In some cases the whole embryo sac shows a strong reaction, i.e. its degeneration is complete (Fig. 1(b)).

3.1. Viability of embryo sac

The viability of embryo sacs following normal development (8-nucleate; 5-nucleate, which means with degenerated antipodals and 4-nucleate with fused polar nuclei) was tested during full bloom, including balloon stage (Fig. 2).

Fig. 1. Embryo sacs of sour cherry ‘Čačanski Rubin’ in the days following anthesis. A strong colour reaction of the degenerated synergid in the egg apparatus indicates degeneration of this structure (a) (× 500), and of the entire content of the degenerated embryo sac (b) (× 660).
Fig. 2. The ratio of % functional embryo sacs to days at full bloom in unpollinated flowers of sour cherry ‘Čačanski Rubin’ over 2 years. 1992: \(y = 60.46 + 4.20x - 0.84x^2 \) (\(R = 0.99 \)); 1993: \(y = 89.88 + 3.54x - 1.12x^2 \) (\(R = 0.93 \)). Bs = Balloon stage; On = Onset of full bloom.

Regression lines are best fitted, and their trend in both years shows the maximum between day 2 and day 4 of full bloom. In the first year, the eight-nucleate cytological stage of the embryo sac was observed at balloon stage, and the following year it was also recorded at the onset of full bloom. A difference was noticed between the 2 years in the number of functional embryo sacs. In 1993, a higher percentage of functional embryo sacs was observed compared to the previous year.

In both years, the percentage of functional embryo sacs shows a downward trend after day 4, and at day 10 of full bloom it amounts to only 16%. After day 4 of full bloom, degeneration and irregularity in the spatial distribution of individual cells of the embryo sac were observed, especially of the egg cell (Fig. 3(a)). The phenomenon of complete separation of the egg apparatus cells was sometimes noticed (Fig. 3(b)). In the embryo sac, the central nucleus showed the greatest longevity. Parallel to the above described degenerative and irregular distribution in the embryo sac, the ovule tissue can also show signs of degeneration. In such ovules degeneration is first observed in the integuments, spreading later to the entire ovule.

In both years mean annual daily temperatures at full bloom were approximately the same (14.3°C and 14.8°C in 1992 and 1993, respectively) (Fig. 4), so that they could not be responsible for the differences in embryo sac viability recorded in both years.
Fig. 3. Embryo sacs of sour cherry ‘Ćačanski Rubin’ after day 4 of full bloom. The occurrence of the irregular distribution of the individual elements of the egg apparatus (a) (× 660) and of all cells of the egg apparatus occurs with aging as a sign of degeneration (b) (× 330).

Fig. 4. Dynamics of temperatures at full bloom of sour cherry ‘Ćačanski Rubin’ in 2 years.

3.2. Fertilization success

Fertilization success, expressed as the percentage of embryo sacs in which the embryo is present, was monitored during full bloom (Fig. 5). The globular embryo is the highest developmental stage in the process of embryogenesis, observed during full bloom. The process of endosperm formation started concurrently with the process of early embryogenesis. The dynamics of the percentage of embryo sacs with an embryo follows a linear trend (for 1992) and a parabolic trend (in 1993). The appearance of the embryo in 1992 was observed at
Fig. 5. The ratio of % embryo sacs in which the embryo is present to days after pollination in sour cherry ‘Čačanski Rubin’ in 2 years. 1992: $y = -38.89 + 4.20x \ (R = 0.98)$; 1993: $y = -66.66 + 37.50x - 2.08x^2 (R = 0.99)$.

day 6 after pollination, in contrast to the following year when it was observed 2 days earlier. In 1993 the trend of embryo sacs with an embryo showed a more rapid growth compared to 1992, with the embryo present in all the ovules tested on day 8 after pollination. Mean daily temperature at full bloom was approximately the same in both years. Year-to-year differences were found to exist when observing the interval from the onset of full bloom-pollination, with the appearance of the embryo inclusive. Thus, in 1992 when the appearance of the embryo was observed on day 6 after pollination, mean daily temperature for the interval was 13.1°C. The next year, the embryos were observed on day 4 after pollination, with the mean daily temperature for the interval being 15.3°C (Fig. 4).

4. Discussion

The occurrence of the early degeneration of the embryo sac is a factor that can substantially affect the degree of fertility. In sour cherry ‘Montmorency’, up to 40% of embryo sacs were found to be incomplete, degenerated, and contained four or fewer nuclei at full bloom (Furukawa and Bukovac, 1989). The degeneration of the egg apparatus, as well as of the entire embryo sacs, was also observed in other sour cherry cultivars (Dys, 1984). Similar phenomena were noticed at the onset of full bloom in our present paper, no matter whether the degeneration of the entire embryo sacs or their individual elements was in question. These phenomena can be directly related to the origin of sour cherry as a plant species. Sour cherry (Prunus cerasus L.) is a tetraploid, and its
development involves the genomes of different species of the genus *Prunus* (Olden and Nybom, 1968). Non-homology between sister chromosomes during meiosis results in a certain degree of abnormality in the embryo sac. However, environmental factors also have an influence on this early degeneration of the embryo sac. In our observations, the occurrence of abnormal embryo sacs had a direct effect on the number of functional embryo sacs at the onset of full bloom in sour cherry ‘Čačanski Rubin’.

The second parameter concerning the functionality of embryo sac is its longevity at full bloom. The number of functional embryo sacs in sour cherry "Montmorency" was reduced to 8% on day 7 of full bloom (Furukawa and Bukovac, 1989). In some sour cherry cultivars the embryo sac longevity ranges from 3 to 5 days (Anvari and Stösser, 1978; Stösser and Anvari, 1982). The loss of embryo sac viability in some sweet cherry cultivars is much quicker, starting after day 2 of full bloom (Eaton, 1959). In all the mentioned cases, as well as in our present paper, the elements of the embryo sac degenerate as follows: synergids degenerate first, followed by the egg cell and polar nuclei, i.e. the central nucleus. Concurrently with the degeneration of the elements of the embryo sac, the occurrence of irregular spatial distribution of the egg apparatus cells was noticed, i.e. their separation, which is typical of some sour cherry cultivars but only at the beginning of full bloom (Dys, 1984). In our present research, the viability of embryo sacs in ‘Čačanski Rubin’ in both years was longer compared to the results obtained with other sour cherry cultivars.

The time interval from the moment of pollination or fertilization up to the completely developed embryo varies according to the fruit species. Depending on the year, the appearance of the embryo in our present work was observed on day 4 or day 6 following pollination and can be related to the efficiency of the progamic phase under particular temperature conditions at full bloom (Cerović and Ružić, 1992). On the other hand, if the functionality of embryo sacs is assessed in terms of their viability, the number of viable embryo sacs is approximately equal to the initial number of embryo sacs with an embryo. The progressive development of fertilization success is different in the 2 years, whereas, the viability of embryo sacs in the non-pollinated combination progressively decreases after day 4 of full bloom, and may be related to the effect of the pollination process on activation of the ovary (Linskens, 1973; Deurenberg, 1976). Development and growth of embryo sacs was stimulated by the presence of compatible pollen tubes in the style and final growth elongation of the embryo sac was promoted by cross-pollination in almond (Pimienta and Polito, 1983). In cross-pollinated flowers of both pear and peach, the increased viability period of the embryo sac is accompanied by an elongation of the embryo sac itself (Herrero and Gascon, 1987; Herrero et al., 1988). There is also a possibility that prolongation of embryo sac viability, stimulated by pollination exists in sour cherry, and hence chances for fertilization are increased, as in the previously mentioned fruit species
The prolongation of embryo sac viability in ‘Čačanski Rubin’, as well as the progressive growth trend of fertilization success as reported in this paper, are directly affected by pollination, which was carried out at the onset of full bloom. Pollination at later intervals after anthesis has a drastic effect on the decrease of fertilization efficacy and fruit set in some sweet cherry and sour cherry cultivars (Stösser and Anvari, 1982, 1983).

Our investigations have shown that the functionality of embryo sacs, represented by the number of normally developed embryo sacs, contributes to fertilization success in ‘Čačanski Rubin’ at full bloom, and has no effect on irregular fertility of this cultivar. Although a direct correlation between fertilization and fruit set in sour cherry (Lech and Tylus, 1983) was observed, the occurrence of abnormality in some sour cherry cultivars at a later stage of embryo and endosperm development has sometimes been observed (Stösser and Anvari, 1978). Furukawa and Bukovac (1989) indicate that nutritional and environmental stresses during early fruit development are the major factors leading to embryo abortion. Further investigations would elucidate whether these factors may be responsible for decrease of fertilization success in ‘Čačanski Rubin’, namely for differing fertility of this cultivar.

Acknowledgements

The authors wish to thank Mrs Mirjana Radovanović for the English text.

References

Orders, claims, and product enquiries: please contact the Customer Support Department at the Regional Sales Office nearest you:

New York: Elsevier Science, PO Box 945, New York, NY 10159-0945, USA; phone: (+1) (212) 633 3730 [toll free number for North American customers: 1-888-4ES-INFO (437-4636)]; fax: (+1) (212) 633 3680; e-mail: usinfo-f@elsevier.com

Amsterdam: Elsevier Science, PO Box 211, 1000 AE Amsterdam, The Netherlands; phone: (+31) 20 4853757; fax: (+31) 20 4853432; e-mail: nlinfo-f@elsevier.nl

Tokyo: Elsevier Science, 9-15, Higashi-Azabu 1-chome, Minato-ku, Tokyo 106-0044, Japan; phone: (+81) (3) 5561 5033; fax: (+81) (3) 5561 5047; e-mail: info@elsevier.co.jp

Singapore: Elsevier Science, No.1 Temasek Avenue, #17-01 Millenia Tower, Singapore 039192; phone: (+65) 434 3727; fax: (+65) 337 2230; e-mail: asiainfo@elsevier.com.sg

Rio de Janeiro: Elsevier Science, Rua Sete de Setembro 111/16 Andar, 20050-002 Centro, Rio de Janeiro - RJ, Brazil; phone: (+55) (21) 509 5340; fax: (+55) (21) 507 1991; e-mail: elsevier@campus.com.br [Note (Latin America): for orders, claims and help desk information, please contact the Regional Sales Office in New York as listed above]

Advertising information. Advertising orders and enquiries can be sent to: **Europe and ROW:** Rachel Gresle-Farthing, Elsevier Science Ltd., Advertising Department, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK; phone: (+44) (1865) 843565; fax: (+44) (1865) 843976; e-mail: r.gresle-farthing@elsevier.co.uk. **USA and Canada:** Elsevier Science Inc., Mr. Tino DeCarlo, 655 Avenue of the Americas, New York, NY 10010-5107, USA; phone: (+1) (212) 633 3815; fax: (+1) (212) 633 3820; e-mail: t.decarlo@elsevier.com. **Japan:** Elsevier Science Japan, Advertising Department, 9-15 Higashi-Azabu 1-chome, Minato-ku, Tokyo 106-0044, Japan; phone: (+81) (3) 5561-5033; fax: (+81) (3) 5561-5047.

Submission of manuscripts: Manuscripts should be sent in triplicate directly to the relevant member of Editorial team.

Enquiries concerning manuscripts and proofs: questions arising after acceptance of the manuscript, especially those relating to proofs, should be directed to Elsevier Science Ireland Ltd., Bay 15K, Shannon Industrial Estate, Shannon, Co. Clare, Ireland, tel: +353 61 471944, fax: +353 61 472052/144.

Electronic manuscripts: Electronic manuscripts have the advantage that there is no need for the rekeying of text, thereby avoiding the possibility of introducing errors and resulting in reliable and fast delivery of proofs.

For the initial submission of manuscripts for consideration, hardcopies are sufficient. For the processing of **accepted papers,** electronic versions are preferred. After **final acceptance,** your disk plus three, final and exactly matching printed versions should be submitted together. Double density (DD) or high density (HD) diskettes (3.5 or 5.25 inch) are acceptable. It is important that the file saved is in the native format of the wordprocessor program used. Label the disk with the name of the computer and wordprocessing package used, your name, and the name of the file on the disk. Further information may be obtained from the publisher.

Authors in Japan please note: Upon request, Elsevier Science Japan will provide authors with a list of people who can check and improve the English or their paper **(before submission).** Please contact our Tokyo office: Elsevier Science Japan, 1-9-15 Higashi-Azabu, Minato-ku, Tokyo 106-0044, Japan; tel: (03) 5561-5033; fax: (03) 5561-5047.

For a full and complete Guide for Authors please refer to **Scientia Horticulturae** Vol. 79 Nos. 3,4 pp. 263–265. The instructions can also be found on the World Wide Web: Access under http://www.elsevier.nl or http://www.elsevier.com

Scientia Horticulturae has no page charges

© The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992

(Permanence of Paper)

Printed in The Netherlands

US-mailing info, **Scientia Horticulturae** (ISSN 0304-4238) is published monthly by Elsevier Science B.V. (Molenwerf 1, Postbus 211, 1000 AE, Amsterdam). Annual subscription price in the USA is US$ 1127.00 (valid in North, Central and South America), including air speed delivery. Second class postage paid at Jamaica, NY 11431.

USA POSTMASTERS: Send address changes to **Scientia Horticulturae** Publications Expediting Inc., 200 Meacham Avenue, Elmont, NY 11003.

AIRFREIGHT AND MAILING in the USA by Publications Expediting Inc., 200 Meacham Avenue, Elmont, NY 11003.
AIMS AND SCOPE
The journal is devoted exclusively to the publication of original papers and review articles on biological and technological research in the areas of postharvest storage, treatment, quality evaluation, packaging, handling and distribution of agronomic (including forage) and horticultural crops. Articles on the postharvest treatment of fresh product as affecting the quality of processed product will be included, but articles on food processing will not be considered for the journal. Papers based on interdisciplinary research will be encouraged. These disciplines include ecology, entomology, plant physiology, plant pathology, molecular biology, chemistry, engineering, technology and economics.

Editorial Advisory Board:
R.H. Abernethy, University of Wyoming, Laramie, WY, USA,
F. Bangerth, Universität Hohenheim, Stuttgart, Germany,
C.H. Bell, ADAS Central Science Lab, Slough, UK,
T. Brokenshire, Horticultural Advisory Service, Guernsey,
Channel Islands, J.C. Burns, North Carolina State University,
Raleigh, NC, USA, M. Collins, University of Kentucky, North Lexington, KY, USA, Y. Fuchs, The Volcani Center, Bet Dagan, Israel, K.C. Gross, USDA-ARS, Beltsville, MD, USA,
R.C. Herner, Michigan State University, East Lansing, MI, USA, E.W. Hewett, Massey University, Palmerston North, New Zealand,
C.R. Hurbrugh, Jr., Iowa State University, Ames, IA, USA,
H. Hyodo, Shizuoka University, Ohyo, Shizuoka, Japan,
A.A. Kader, University of California, Davis, CA, USA,
M. Knee, The Ohio State University, Columbus, OH, USA,
E. Lange, Research Institute of Pomology and Floriculture, Skierniewice, Poland,
E.C. Lougheed, University of Guelph, ON, Canada,
W.B. Mcgillson, University of Western Sydney, Richmond,
NSW, Australia, G.A. Norton, Cooperative Research Centre for Tropical Pest Management, University of Queensland, St. Lucia, Queensland, Australia,
J.-C. Pech, Ecole Nationale Superieure Agronomique, Toulouse, France, W.R. Romig, DNA Plant Technology Corporation, Cinnaminson, NJ,
USA, D.B. Sauer, USDA-ARS, Manhattan, KS, USA,
R.O. Sharples, Horticulture Research International, Maidstone, Kent, UK,
R.P. Singh, University of California, Davis, CA, USA,
G. Tucker, University of Nottingham, Loughborough, UK,
W.G. Tucker, Institute of Horticultural Research, Wellesbourne, UK, W.G. van Doorn, Agrotechnological Research Institute, Wageningen, The Netherlands,
J. Vangronsveld, Limburgs Universitair Centrum, Dierenpenbeek, Belgium and
W.R. Woodson, Department of Horticulture, Purdue University, West Lafayette, IN, USA

ABSTRACTED/INDEXED IN
CAB Abstracts, Food Science & Technology Abstracts.

1994 SUBSCRIPTION DATA
Volume 4 (In 4 issues)
Subscription price:
Dfl. 355.00 (US $ 192.00)
incl. Postage
ISSN 0925-5214

Elsevier Science B.V.
P.O. Box 211, 1000 AE Amsterdam,
The Netherlands,
Fax: (020) 5803-203

Customers in the USA and Canada:
Elsevier Science Inc.
P.O. Box 888, Madison Square Station,
New York, NY 10160-0757, USA
Fax: (212) 633-3680

Non VAT (Value Added Tax) registered customers in the European Community should add the appropriate VAT rate applicable in their country to the prices. The Dutch Guilders (DA) prices quoted are definitive and apply worldwide, except in the Americas (North, South and Central America). US Dollar (US $) prices quoted are valid in the Americas only.